

Physics with the PHENIX Muon Arms J/ψ 's, charm and forward hadrons

Mike Leitch - Los Alamos National Laboratory leitch@lanl.gov

- Heavy-quark physics issues from pp and dAu towards AuAu
 - shadowing, p_T broadening, ...
- The PHENIX muon arms
- J/w results from PHENIX
- Centrality dependence for J/ψ's
- Open Charm- another window complementary to J/ψ 's
- Forward/backward hadrons from single muons
- Expectations for AuAu based on dAu results
- Other future physics focuses
- Summary

Nuclear modification of parton level structure & dynamics

Modification of parton momentum distributions of Eskola, Kolhinen, Vogt hep-ph/0104124 nucleons embedded in nuclei

- e.g. shadowing depletion of low-momentum partons
- · Very low momentum fraction partons have large size, overlap with neighbors, and fuse; thus enhancing the population at higher momenta at the expense of lower momenta
- color glass condensate specific/fundamental model that gives gluon shadowing in nuclei Production of heavy vector mesons, e.g. $J/\Psi,\Psi'$ and Υ
- production: color singlet or octet ccbar?
- hadronization time
- feed-down from higher mass resonances, e.g. χ_c

Nuclear modification of parton level structure & dynamics II

Nuclear effects on parton "dynamics"

- energy loss of partons as they propagate through nuclei
- and (associated?) multiple scattering effects (Cronin effect)
- absorption of J/ψ on nucleons or comovers; compared to no-absorption for open charm production

dAu also baseline for AuAu J/ψ Quark Gluon Plasma (QGP) signature

 Debye screening predicted to destroy J/ψ's in a QGP

 but recent charm recombination models might instead cause an enhancement?

J/ψ suppression in pA fixed-target

800 GeV p-A (FNAL)

Leitch et al, PRL 84, 3256 (2000); PRL 72, 2542 (1994)

- J/ Ψ and Ψ similar at large \mathbf{x}_{F} where they both correspond to a $c\overline{c}$ traversing the nucleus
- but Ψ' absorbed more strongly than J/Ψ near mid-rapidity (x $_{\text{F}}\sim0$) where the resonances are beginning to be hadronized in nucleus
- open charm not suppressed (at $x_F \sim 0$)

0.5

 x_F

0.7

0.1

-0.1

0.3

W/Be $(x_{F_{\star}})$

0.9

5

PHENIX Muon Arms designed, built, commissioned and maintained by Los Alamos with help from ORNL, PHENIX France, UNM, NMSU, Japan, Korea and others

$J/\psi \rightarrow \mu + \mu$ - Analysis for dAu & pp

Analysis led by LANL (Mike Leitch)

 \bullet In PHENIX, J/ψ mostly produced by gluon fusion, and thus sensitive to gluon pdf

 Three rapidity ranges probe different momentum fraction of Au partons

- South (y < -1.2): large X_2 (in gold) ~ 0.090

- Central (y ~ 0): intermediate X_2 ~ 0.020

- North (y > 1.2): small X_2 (in gold) ~ 0.003

South Muon Arm

North Muon Arm

Example of predicted gluon shadowing in d+Au

dAu/pp versus pt

p_T broadening comparable to lower energy (√s = 39 GeV in E866)

$$\sigma_{dA} = \sigma_{pp} (2 \times 197)^{\alpha}$$

e⁺e⁻ analysis led by Xie Wei (Riverside) ^{0.8}

α

Cross section versus rapidity

BR $\sigma_{pp} = 160 \text{ nb} \pm 8.5 \% \text{ (fit)} \pm 12.3\% \text{ (abs)} - preliminary}$

dAu/pp versus rapidity

Data favors (weak) shadowing + (weak) absorption (α > 0.92)

With limited statistics difficult to disentangle nuclear effects Will need another dAy run! (and more pp data also) 2/25/2004 9

α versus $x_2(x_{Au})$ compared to lower \sqrt{s}

- Not universal versus X_2 : shadowing is not the whole story.
- Energy loss expected to be weak at RHIC energy
- But could it explain larger suppression for lower energy data?

Central/peripheral versus N_{coll}

$$R_{cp}(N_{coll}) = rac{N_{J\psi}^{cent} \times < N_{coll}^{periph} >}{N_{J\psi}^{periph} \times < N_{coll}^{cent} >}$$

- Low and med x₂ have small variations
 - Weak nuclear effects
 - Small shadowing centrality dependence
- High x_2 has a steep rising shape
 - Difficult to see how antishadowing could be so steep when shadowing is not?

dAu / pp versus N_{coll}

$$R = \frac{\sigma_{dA} \times \langle N_{coll}^{MB} \rangle}{2 \times 197 \times \sigma_{pp} \times \langle N_{coll} \rangle}$$

- Low x₂ shape consistent with shadowing models
 - High x_2 shape steeper than corresponding antishadowing...
 - What could it be?
 - Effect of being closer to the Au frame?
 - e.g. final-state effects in Au nucleus remanant?

Charm production (D mesons) is complementary to J/ψ studies

• shares the same initial-state effects - production mechanism, shadowing, p_T broadening

• but is different in the final-state - e.g. absorption only for J/ψ , final-state p_T

broadening...

Open charm has little or no nuclear dependence in the mid-rapidity (non shadowing) region:

 $a = 1.00 \pm 0.05$

(E769 250GeV p+A)

 $a = 0.92 \pm 0.06$

 $(WA82\ 340GeV\ p+A)$

 $a = 1.02 \pm 0.03 \pm 0.02$ (E789 800GeV p+A)

But significant nuclear suppression is reported in the large x_F (shadowing) region (WA78, a=0.81 \pm 0.05) which could be due to nuclear shadowing.

Ordinary shadowing is process independent and is a "property" of the structure function in a nucleus but Kopeliovich (hep-ph/0104256 & hep-ph/0205151) predicts a large difference between open-charm and J/w shadowing

PHENIX will look for this in d-Au measurements by comparisons between open- and closed-charm.

Open charm from single muons coming soon...

The PHENIX Muon arms give the **only** capability for open charm at RHIC in the (low x) shadowing region!

- A large prompt component in the single muon spectra (in blue in figure) contains a large open charm signal. Work is in progress to correct it for significant contributions from hadron punch through.
- Open charm in dAu collisions at mid-rapidity does not show any suppression, i.e. scales with #collisions from pp.

Analysis led by LANL (Ming Liu)

But muon backgrounds from Light Meson Decays are also a signal : forward hadrons from muons

(or one man's background is another man's signal....)

Ideas from & Analysis led by LANL (Ming Liu)

 Separation from prompt muons via event collision vertex distribution

$R_{CP}(y)$: Muons from Light Meson Decays

$R_{CP}(y)$: Muons from Light Meson Decays

• Los Alamos

Let's Compare centrality dependence of light mesons (π,K) or hadrons and J/ψ 's

- J/ψ's have similar trends but
 - a smaller effect in the shadowing region
 - and much stronger effect in the Au direction
- p_T >1.5 GeV/c (π ,K) or > 1 (hadrons) might cause some differences from J/ψ
- production mechanism differences:
 - J/ψ : gluon fusion
 - hadrons : quark-gluon ~ gluon-gluon with former dominating at higher p_{T}
- · particle mix differences
 - decays are only π & K (π /K ~1)
 - hadrons include protons (p/ π ~ K/ π ~ 0.3)
- Kharzeev thinking about Au gluon field enhancement of J/ψ production as explanation for large effect at negative rapidity

PHENIX Preliminary 200 GeV

Mike Leitch

Simple expectation for AuAu J/ψ 's based on nuclear dependence observed in dAu

- Renormalize model predictions to dAu measurement (top panel).
- Then reverse RdAu and multiply by itself (bottom panel)
- Variations between models not too large at mid-rapidity, but substantial in the large negative or positive rapidity regions. Better models (physics understanding) might help, but a higher statistics dAu baseline, especially in the $\mu\mu$ regions is needed.
- 2004 AuAu run: (1600 J/ ψ)/arm expected for 130 μb^{-1}
- Challenge of pulling out J/ψ signal in AuAu now being worked!

Other Physics Goals for the Future

- •Some other future LANL focuses in the pp, dAu area:
 - $\boldsymbol{\cdot}$ angular distibutions for J/ψ to try to determine production mechanism
 - J/ψ and other signals vrs reaction plane, e.g. to better isolate final-state effects
 - ψ' as a cleaner physics window into shadowing and other nuclear effects (the ψ' , unlike the J/ψ , has no feeddown from higher mass resonances)
 - •open beauty from single muons at higher p_T
 - Y production and its nuclear dependence
 - more exclusive studies of heavy-quark production using a silicon vertex upgrade
- Most of these require higher luminosity running for dAu along with similar pp runs for comparison.
- Many more details of the overall (PHENIX) plan in the PHENIX 10-year plan (pA sections written mostly by yours truly)

Summary

· dAu J/ ψ data suggests that gluon shadowing Rd is weak and that absorption is smaller than expectations based on lower energy data; and p_T broadening is very similar to that seen at lower energies

- We will need more J/ψ 's to definitively disentagle these effects. Another dAu run with higher luminosity is needed.
- · Open-charm results at forward and backward rapidity will be coming from the muon analysis soon and will shed further light on the gluons and their shadowing
- · Near the Au frame, at negative rapidity, a dramatic centrality dependence in both J/ψ and hadrons has been observed and challenges Rcp theoretical models
- LANL is leading the Muon related analysis efforts (e.g. dAu J/ψ and forward/backward hadrons)

2/25/2004 *Mike Leitch*

Cross section versus p_T

p_T is broadened for dAu

Led by LANL (Jane Burward-Hoy & Mike Leitch)

Au breaks up in our south beam counter

- Define 4 centrality classes
- Relate centrality to $\langle N_{coll} \rangle$ through Glauber computation
- $\langle N_{coll}^{MB} \rangle = 8.4 \pm 0.7$

Fermilab E789: D^0 & $B \rightarrow J/\psi X$ (experience with charm & beauty using silicon)

Dimuon spectrometer

16-plane, 50µm pitch/8.5k strip silicon vertex detector

